(0) Obligation:
Clauses:
e(X) :- ','(=(Y, .(e, .(o, Y))), c(Y, X)).
c(.(e, X1), 0).
c(.(X2, X), s(Y)) :- c(X, Y).
Query: e(g)
(1) UnifyTransformerProof (EQUIVALENT transformation)
Added a fact for the built-in = predicate [PROLOG].
(2) Obligation:
Clauses:
e(X) :- ','(=(Y, .(e, .(o, Y))), c(Y, X)).
c(.(e, X1), 0).
c(.(X2, X), s(Y)) :- c(X, Y).
=(X, X).
Query: e(g)
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
e_in: (b)
c_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
e_in_g(X) → U1_g(X, =_in_aa(Y, .(e, .(o, Y))))
=_in_aa(X, X) → =_out_aa(X, X)
U1_g(X, =_out_aa(Y, .(e, .(o, Y)))) → U2_g(X, c_in_ag(Y, X))
c_in_ag(.(e, X1), 0) → c_out_ag(.(e, X1), 0)
c_in_ag(.(X2, X), s(Y)) → U3_ag(X2, X, Y, c_in_ag(X, Y))
U3_ag(X2, X, Y, c_out_ag(X, Y)) → c_out_ag(.(X2, X), s(Y))
U2_g(X, c_out_ag(Y, X)) → e_out_g(X)
The argument filtering Pi contains the following mapping:
e_in_g(
x1) =
e_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
=_in_aa(
x1,
x2) =
=_in_aa
=_out_aa(
x1,
x2) =
=_out_aa
U2_g(
x1,
x2) =
U2_g(
x2)
c_in_ag(
x1,
x2) =
c_in_ag(
x2)
0 =
0
c_out_ag(
x1,
x2) =
c_out_ag
s(
x1) =
s(
x1)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x4)
e_out_g(
x1) =
e_out_g
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
e_in_g(X) → U1_g(X, =_in_aa(Y, .(e, .(o, Y))))
=_in_aa(X, X) → =_out_aa(X, X)
U1_g(X, =_out_aa(Y, .(e, .(o, Y)))) → U2_g(X, c_in_ag(Y, X))
c_in_ag(.(e, X1), 0) → c_out_ag(.(e, X1), 0)
c_in_ag(.(X2, X), s(Y)) → U3_ag(X2, X, Y, c_in_ag(X, Y))
U3_ag(X2, X, Y, c_out_ag(X, Y)) → c_out_ag(.(X2, X), s(Y))
U2_g(X, c_out_ag(Y, X)) → e_out_g(X)
The argument filtering Pi contains the following mapping:
e_in_g(
x1) =
e_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
=_in_aa(
x1,
x2) =
=_in_aa
=_out_aa(
x1,
x2) =
=_out_aa
U2_g(
x1,
x2) =
U2_g(
x2)
c_in_ag(
x1,
x2) =
c_in_ag(
x2)
0 =
0
c_out_ag(
x1,
x2) =
c_out_ag
s(
x1) =
s(
x1)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x4)
e_out_g(
x1) =
e_out_g
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
E_IN_G(X) → U1_G(X, =_in_aa(Y, .(e, .(o, Y))))
E_IN_G(X) → =_IN_AA(Y, .(e, .(o, Y)))
U1_G(X, =_out_aa(Y, .(e, .(o, Y)))) → U2_G(X, c_in_ag(Y, X))
U1_G(X, =_out_aa(Y, .(e, .(o, Y)))) → C_IN_AG(Y, X)
C_IN_AG(.(X2, X), s(Y)) → U3_AG(X2, X, Y, c_in_ag(X, Y))
C_IN_AG(.(X2, X), s(Y)) → C_IN_AG(X, Y)
The TRS R consists of the following rules:
e_in_g(X) → U1_g(X, =_in_aa(Y, .(e, .(o, Y))))
=_in_aa(X, X) → =_out_aa(X, X)
U1_g(X, =_out_aa(Y, .(e, .(o, Y)))) → U2_g(X, c_in_ag(Y, X))
c_in_ag(.(e, X1), 0) → c_out_ag(.(e, X1), 0)
c_in_ag(.(X2, X), s(Y)) → U3_ag(X2, X, Y, c_in_ag(X, Y))
U3_ag(X2, X, Y, c_out_ag(X, Y)) → c_out_ag(.(X2, X), s(Y))
U2_g(X, c_out_ag(Y, X)) → e_out_g(X)
The argument filtering Pi contains the following mapping:
e_in_g(
x1) =
e_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
=_in_aa(
x1,
x2) =
=_in_aa
=_out_aa(
x1,
x2) =
=_out_aa
U2_g(
x1,
x2) =
U2_g(
x2)
c_in_ag(
x1,
x2) =
c_in_ag(
x2)
0 =
0
c_out_ag(
x1,
x2) =
c_out_ag
s(
x1) =
s(
x1)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x4)
e_out_g(
x1) =
e_out_g
E_IN_G(
x1) =
E_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
=_IN_AA(
x1,
x2) =
=_IN_AA
U2_G(
x1,
x2) =
U2_G(
x2)
C_IN_AG(
x1,
x2) =
C_IN_AG(
x2)
U3_AG(
x1,
x2,
x3,
x4) =
U3_AG(
x4)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
E_IN_G(X) → U1_G(X, =_in_aa(Y, .(e, .(o, Y))))
E_IN_G(X) → =_IN_AA(Y, .(e, .(o, Y)))
U1_G(X, =_out_aa(Y, .(e, .(o, Y)))) → U2_G(X, c_in_ag(Y, X))
U1_G(X, =_out_aa(Y, .(e, .(o, Y)))) → C_IN_AG(Y, X)
C_IN_AG(.(X2, X), s(Y)) → U3_AG(X2, X, Y, c_in_ag(X, Y))
C_IN_AG(.(X2, X), s(Y)) → C_IN_AG(X, Y)
The TRS R consists of the following rules:
e_in_g(X) → U1_g(X, =_in_aa(Y, .(e, .(o, Y))))
=_in_aa(X, X) → =_out_aa(X, X)
U1_g(X, =_out_aa(Y, .(e, .(o, Y)))) → U2_g(X, c_in_ag(Y, X))
c_in_ag(.(e, X1), 0) → c_out_ag(.(e, X1), 0)
c_in_ag(.(X2, X), s(Y)) → U3_ag(X2, X, Y, c_in_ag(X, Y))
U3_ag(X2, X, Y, c_out_ag(X, Y)) → c_out_ag(.(X2, X), s(Y))
U2_g(X, c_out_ag(Y, X)) → e_out_g(X)
The argument filtering Pi contains the following mapping:
e_in_g(
x1) =
e_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
=_in_aa(
x1,
x2) =
=_in_aa
=_out_aa(
x1,
x2) =
=_out_aa
U2_g(
x1,
x2) =
U2_g(
x2)
c_in_ag(
x1,
x2) =
c_in_ag(
x2)
0 =
0
c_out_ag(
x1,
x2) =
c_out_ag
s(
x1) =
s(
x1)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x4)
e_out_g(
x1) =
e_out_g
E_IN_G(
x1) =
E_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
=_IN_AA(
x1,
x2) =
=_IN_AA
U2_G(
x1,
x2) =
U2_G(
x2)
C_IN_AG(
x1,
x2) =
C_IN_AG(
x2)
U3_AG(
x1,
x2,
x3,
x4) =
U3_AG(
x4)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
C_IN_AG(.(X2, X), s(Y)) → C_IN_AG(X, Y)
The TRS R consists of the following rules:
e_in_g(X) → U1_g(X, =_in_aa(Y, .(e, .(o, Y))))
=_in_aa(X, X) → =_out_aa(X, X)
U1_g(X, =_out_aa(Y, .(e, .(o, Y)))) → U2_g(X, c_in_ag(Y, X))
c_in_ag(.(e, X1), 0) → c_out_ag(.(e, X1), 0)
c_in_ag(.(X2, X), s(Y)) → U3_ag(X2, X, Y, c_in_ag(X, Y))
U3_ag(X2, X, Y, c_out_ag(X, Y)) → c_out_ag(.(X2, X), s(Y))
U2_g(X, c_out_ag(Y, X)) → e_out_g(X)
The argument filtering Pi contains the following mapping:
e_in_g(
x1) =
e_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
=_in_aa(
x1,
x2) =
=_in_aa
=_out_aa(
x1,
x2) =
=_out_aa
U2_g(
x1,
x2) =
U2_g(
x2)
c_in_ag(
x1,
x2) =
c_in_ag(
x2)
0 =
0
c_out_ag(
x1,
x2) =
c_out_ag
s(
x1) =
s(
x1)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x4)
e_out_g(
x1) =
e_out_g
C_IN_AG(
x1,
x2) =
C_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
C_IN_AG(.(X2, X), s(Y)) → C_IN_AG(X, Y)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
C_IN_AG(
x1,
x2) =
C_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_IN_AG(s(Y)) → C_IN_AG(Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- C_IN_AG(s(Y)) → C_IN_AG(Y)
The graph contains the following edges 1 > 1
(14) YES